Abstract

The energies of adsorbed H and D recoiled from tungsten surfaces during bombardment with 3keV Ne+ at oblique angles of incidence were measured. The energy spectra show structure that extends above the elastic recoil energy. We find that the high-energy structure results from multiple collisions, namely recoil of a H isotope followed by scattering from an adjacent W atom, and vice versa. This scattering assisted recoil process is especially prevalent for H isotopes adsorbed on W, owing to the large mass difference between the scattering partners. Such processes will tend to enhance H isotope recycling from plasma-facing W surfaces and reduce energy transfer to the W substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.