Abstract
The human brain, primarily composed of white blood cells, is centered on the neurological system. Incorrectly positioned cells in the immune system, blood vessels, endocrine, glial, axon, and other cancer-causing tissues, can assemble to create a brain tumor. It is currently impossible to find cancer physically and make a diagnosis. The tumor can be found and recognized using the MRI-programmed division method. It takes a powerful segmentation technique to produce accurate output. This study examines a brain MRI scan and uses a technique to obtain a more precise image of the tumor-affected area. The critical aspects of the proposed method are the utilization of noisy MRI brain images, anisotropic noise removal filtering, segmentation with an SVM classifier, and isolation of the adjacent region from the normal morphological processes. Accurate brain MRI imaging is the primary goal of this strategy. The divided section of the cancer is placed on the actual image of a particular culture, but that is by no means the last step. The tumor is located by categorizing the pixel brightness in the filtered image. According to test findings, the SVM could partition data with 98% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.