Abstract

Brain activity is a dynamic combination of different sensory responses and thus brain activity/state is continuously changing over time. However, the brain's dynamical functional states recognition at fast time-scales in task fMRI data have been rarely explored. In this paper, we propose a novel 5-layer deep sparse recurrent neural network (DSRNN) model to accurately recognize the brain states across the whole scan session. Specifically, the DSRNN model includes an input layer, one fully-connected layer, two recurrent layers, and a softmax output layer. The proposed framework has been tested on seven task fMRI data sets of Human Connectome Project. Extensive experiment results demonstrate that the proposed DSRNN model can accurately identify the brain's state in different task fMRI data sets and significantly outperforms other auto-correlation methods or non-temporal approaches in the dynamic brain state recognition accuracy. In general, the proposed DSRNN offers a new methodology for basic neuroscience and clinical research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.