Abstract
Cervical cancer is a high incidence of cancer in women and cervical precancerous screening plays an important role in reducing the mortality rate. In this study, we proposed a multichannel feature extraction method based on the probability distribution features of the Acetowhite (AW) region to identify cervical precancerous lesions, with the overarching goal to improve the accuracy of cervical precancerous screening. A k-means clustering algorithm was first used to extract the cervical region images from the original colposcopy images. We then used a deep learning model called DeepLab V3+ to segment the AW region of the cervical image after the acetic acid experiment, from which the probability distribution map of the AW region after segmentation was obtained. This probability distribution map was fed into a neural network classification model for multichannel feature extraction, which resulted in the final classification performance. Results of the experimental evaluation showed that the proposed method achieved an average accuracy of 87.7%, an average sensitivity of 89.3%, and an average specificity of 85.6%. Compared with the methods that did not add segmented probability features, the proposed method increased the average accuracy rate, sensitivity, and specificity by 8.3%, 8%, and 8.4%, respectively. Overall, the proposed method holds great promise for enhancing the screening of cervical precancerous lesions in the clinic by providing the physician with more reliable screening results that might reduce their workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Medical Imaging Formerly Current Medical Imaging Reviews
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.