Abstract

Thermomagnetic heat engines were designed, constructed, and tested, where numbers of gadolinium (Gd) blocks were used to exploit low temperature waste heat. Gadolinium is a rare earth material whose magnetic property changes with temperature, altering between ferromagnetic and paramagnetic. A motion develops in the thermomagnetic heat engine as Gd blocks are exposed to different temperatures causing changes in their magnetic property. A change in the magnetic property of any Gd block is directly related to the resultant torque driving the thermomagnetic heat engine for power production. Among heat engines studied to date, the cylindrical thermomagnetic heat engine was able to develop a maximum mechanical power of 1.1 W at a temperature difference of 45 °C between hot and cold thermal resources. Furthermore, depending on the effectiveness of an electromagnetic generator (EMG) combined with a triboelectric nanogenerator (TENG), the electric power output can be notably improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.