Abstract
Carbon fiber (CF) is a promising material as carbon-based electrode and support for flexible supercapacitors. However, it still suffers from narrow voltage in the aqueous electrolyte due to the water decomposition (1.23 V). Herein, an aerobic pyrolysis is developed to recover aligned carbon fibers from carbon fiber reinforced polymers. More importantly, during this oxygen existence condition, the surface of reclaimed carbon fibers (RCFs) is etched into groove-shaped structure and modified by introducing abundant oxygen-containing functional groups, which significantly expands the negative potential window of RCFs-based electrode to −1.4 V (vs standard calomel electrode) and the working voltage of RCFs-based symmetric supercapacitor to 2.4 V in an aqueous electrolyte of 1.0 M Na2SO4, with capacitance retention of 90% and 93.6% after 10 000 cycles, respectively. This work well matches the aerobic pyrolysis of recovery of CFs from CFRPs and electrochemical performances of RCFs, supplying a new strategy to de...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.