Abstract

Materials that require coupling between the stress-strain and momentum-velocity constitutive relations were first proposed by Willis (Willis 1981 Wave Motion3, 1-11. (doi:10.1016/0165-2125(81)90008-1)) and are now known as elastic materials of the Willis type, or simply Willis materials. As coupling between these two constitutive equations is a generalization of standard elastodynamic theory, restrictions on the physically admissible material properties for Willis materials should be similarly generalized. This paper derives restrictions imposed on the material properties of Willis materials when they are assumed to be reciprocal, passive and causal. Considerations of causality and low-order dispersion suggest an alternative formulation of the standard Willis equations. The alternative formulation provides improved insight into the subwavelength physical behaviour leading to Willis material properties and is amenable to time-domain analyses. Finally, the results initially obtained for a generally elastic material are specialized to the acoustic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.