Abstract

Preimplantation genetic diagnosis (PGD) is widely applied in reciprocal translocation carriers to increase the chance for a successful live birth. However, reciprocal translocation carrier embryos were seldom discriminated from the normal ones mainly due to the technique restriction. Here we established a clinical applicable approach to identify precise breakpoint of reciprocal translocation and to further distinguish normal embryos in PGD. In the preclinical phase, rearrangement breakpoints and adjacent single nucleotide polymorphisms (SNPs) were characterized by next-generation sequencing following microdissecting junction region (MicroSeq) from 8 reciprocal translocation carriers. Junction-spanning PCR and sequencing further discovered precise breakpoints. The precise breakpoints were identified in 7/8 patients and we revealed that translocations in 6 patients caused 9 gene disruptions. In the clinical phase of embryo analysis, informative SNPs were chosen for linkage analyses combined with PCR analysis of the breakpoints to identify the carrier embryos. From 15 blastocysts diagnosed to be chromosomal balanced, 13 blastocysts were identified to be carriers and 2 to be normal. Late prenatal diagnoses for five carriers and one normal fetus confirmed the carrier diagnosis results. Our results suggest that MicroSeq can accurately evaluate the genetic risk of translocation carriers and carrier screen is possible in later PGD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.