Abstract

In our previous studies, by simply inducing burn injuries on bullfrog hearts or partially exposing their surface to high-potassium (K+) solution, we could reproduce a ST segment elevation in the electrocardiogram (ECG), which is a characteristic finding in human ischemic heart disease. In the present study, using our burn-induced subepicardial injury model, we could additionally reproduce “reciprocal” ST segment changes for the first time in frog hearts, mimicking those observed in human acute myocardial infarction. Immunohistochemistry demonstrated markedly decreased Na+/K+-ATPase protein expression in the ventricular surface after the burn injury. The loss of this pump expression in injured cardiomyocytes was thought to be responsible for the creation of “currents of injury” and the subsequent ST segment changes observed in acute myocardial infarction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.