Abstract

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living organisms. The homeostasis of NAD is required for plant growth, development, and adaption to environmental cues. In this study, we isolated a chilling hypersensitive Arabidopsis thaliana mutant named qs-2 and identified the causal mutation in the gene encoding quinolinate synthase (QS) critical for NAD biosynthesis. The qs-2 mutant is also hypersensitive to salt stress and abscisic acid (ABA) but resistant to drought stress. The qs-2 mutant accumulates a reduced level of NAD and over-accumulates reactive oxygen species (ROS). The ABA-hypersensitivity of qs-2 can be rescued by supplementation of NAD precursors and by mutations in the ABA signaling components SnRK2s or RBOHF. Furthermore, ABA-induced over-accumulation of ROS in the qs-2 mutant is dependent on the SnRK2s and RBOHF. The expression of QS gene is repressed directly by ABI4, a transcription factor in the ABA response pathway. Together, our findings reveal an unexpected interplay between NAD biosynthesis and ABA and stress signaling, which is critical for our understanding of the regulation of plant growth and stress responses.

Highlights

  • Plants respond to harsh environments by activating protective stress responses and by actively repressing growth

  • Nicotinamide adenine dinucleotide (NAD) is a coenzyme essential for metabolisms and signal transduction in all living organisms, but little is known about its role in Abscisic acid (ABA)-mediated plant growth inhibition

  • We show that a mutation in quinolinate synthase (QS) gene that causes reduced level of NAD influences the ABA signal transduction in Arabidopsis, suggesting a possible conserved role of NAD in abiotic stress response in plants

Read more

Summary

Introduction

Plants respond to harsh environments by activating protective stress responses and by actively repressing growth. The interplay between plant growth and stress signaling pathways has been reported [1,2]. As a regulatory hub linking primary metabolism, redox regulation and energy signaling [3], nicotinamide adenine dinucleotide (NAD) is presumably an important factor for stress resistance and for plant growth regulation under stress environments [4,5]. In addition to its role in stress response, ABA plays an important role in plant growth and development through modulating the kinase activity of SnRK2s. The triple knockout mutant of the three kinases, snrk2.2/2.3/2.6, shows increased leaf emergence and seedling growth, suggesting that the ABA signaling mediated by the SnRK2s is important for plant growth [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.