Abstract

A Pt-functionalized hydrogen sensor was fabricated on a recessed AlGaN/GaN heterojunction platform where the thickness of the recessed AlGaN barrier layer under the Pt catalyst was 10 nm. Sensing characteristics were investigated under two different bias modes: forward and reverse bias operations. Unlike conventional diode type sensors, the recessed heterojunction sensor exhibited superior sensing characteristics under the reverse bias operation mode in comparison to the forward bias operation mode. The thin AlGaN barrier layer enhanced the field emission process under reverse bias operation, thus enabling a high response, which had another benefit of significantly lowering standby power consumption compared to the forward bias operation mode. A response of ~870 % and a response time of ~11 sec were achieved at 200°C with a standby power consumption of 0.03 W/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.