Abstract

Arginine contains the guanidinium group and thus has structural similarity to ligands of imidazoline and alpha-2 adrenoceptors (alpha-2 AR). Therefore, we investigated the possibility that exogenous arginine may act as a ligand for these receptors in human umbilical vein endothelial cells and activate intracellular nitric oxide (NO) synthesis. Idazoxan, a mixed antagonist of imidazoline and alpha-2 adrenoceptors, partly inhibited L-arginine-initiated NO formation as measured by a Griess reaction. Rauwolscine, a highly specific antagonist of alpha-2 AR, at very low concentrations completely inhibited NO formation. Like L-arginine, agmatine (decarboxylated arginine) also activated NO synthesis, however, at much lower concentrations. We found that dexmedetomidine, a specific agonist of alpha-2 AR was very potent in activating cellular NO, thus indicating a possible role for alpha-2 AR in L-arginine-mediated NO synthesis. D-arginine also activated NO production and could be inhibited by imidazoline and alpha-2 AR antagonists, thus indicating nonsubstrate actions of arginine. Pertussis toxin, an inhibitor of G proteins, attenuated L-arginine-mediated NO synthesis, thus indicating mediation via G proteins. L-type Ca(2+) channel blocker nifedipine and phospholipase C inhibitor U73122 inhibited NO formation and thus implicated participation of a second messenger pathway. Finally, in isolated rat gracilis vessels, rauwolscine completely inhibited the L-arginine-initiated vessel relaxation. Taken together, these data provide evidence for binding of arginine to membrane receptor(s), leading to the activation of endothelial NO synthase (eNOS) NO production through a second messenger pathway. These findings provide a previously unrecognized mechanistic explanation for the beneficial effects of L-arginine in the cardiovascular system and thus provide new potential avenues for therapeutic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.