Abstract

Sepsis is still associated with excess morbidity and mortality worldwide, despite significant advances in critical care medicine. A novel approach is needed in the treatment of sepsis, one that will aim to correct the specific immunologic imbalance that is detrimental to the septic host. As receptor for advanced glycation end products (RAGE) is involved in diverse cellular mechanisms that to a lesser or greater extent participate in the septic process, modulating its function could favorably affect outcome. Altering RAGE may result in regulating the release of proinflammatory cytokines, controlling apoptosis or modifying endothelial architecture. In that regard, several strategies have been used to study RAGE deficiency in experimental models of sepsis including antibodies against RAGE, genetically deleted RAGE knockouts, siRNA to silence RAGE, soluble forms of RAGE, and antibodies and inhibitors directed toward RAGE ligands, such as HMGB1 and S100 proteins. These studies thus far have yielded inconsistent results as to whether RAGE is beneficial or not to the host response during bacterial infection and sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.