Abstract

Normal growth and development of high plants strongly depends on the concentration of microelements, including essential heavy metals, in the substrate. However, an excess of those elements may become harmful. Therefore, micronutrient concentrations in plant tissue should be well-balanced and controlled by homeostatic mechanisms. The advancement of knowledge on the regulation of metal homeostasis in plants is important for phytoremediation of metal-contaminated soil and for micronutrient malnutrition control. Experimental data from loss-of-function and gain-of-function studies, including functional descriptions and classifications have presented new opportunities for multiplex CRISPR/dCas9-driven control of gene expression and have opened up new prospects for the goal-seeking regulation of metal homeostasis in plants. The aim of this review is to help for multiplex transcriptional programming targets search by summarizing and analyzing data on possible ways to handle a plant's ability to maintain metal homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.