Abstract

As a star two-dimensional material, molybdenum disulfide (MoS2) shows a good potential in the field of electrochemical hydrogen evolution reaction (HER) due to its low price, special physicochemical properties and a small theoretical Gibbs free energy of hydrogen adsorption. However, some disadvantages such as poor electroconductivity and inert basal planes hinder its further improvement of HER activity. Therefore, adopting carbon materials with good electrical conductivity and large specific surface area to composite with MoS2 is one of the popular strategies to improve the electrical conductivity and increase the exposure of catalytically active sites for constructing highly efficient MoS2-based electrocatalysts. Herein, in this review, we firstly gave a brief introduction of the MoS2 structure and the basic HER principle. Then, the synthesis method, catalytic performance and reaction mechanism of utilizing different carbon materials to improve the HER activity of MoS2 were summarized in detail. Finally, the existing problems and future opportunities for preparing highly active and low cost electrocatalysts assisted by carbon materials are prospected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.