Abstract

The deleterious effects of ionizing radiation are a major concern of the modern world. In the last decades, outstanding interest has been given to developing new therapeutic tools designed for protection against the toxic effects of ionizing radiation. Deinococcus spp. are among the most radioresistant organisms on Earth, being able to survive extreme doses of radiation, 1000-fold higher than most vertebrates. The molecular mechanisms underlying DNA repair and biomolecular protection, which are responsible for the remarkable radioresistance of Deinococcus bacteria, have been a debatable subject for the last 60 years. This paper is focused on the most recent findings regarding the molecular background of radioresistance and on Deinococcus bacteria response to oxidative stress. Novel proteins and genes involved in the highly regulated DNA repair processes, and enzymatic and non- enzymatic antioxidant systems are presented. In addition, a recently proposed mechanism that may contribute to oxidative damage protection in Deinococcus bacteria is discussed. A better understanding of these molecular mechanisms may draw future perspectives for counteracting radiation-related toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.