Abstract
One-dimensional carbon nanotubes and two-dimensional graphene nanosheets with unique electrical, mechanical and thermal properties are attractive reinforcements for fabricating light weight, high strength and high performance metal-matrix composites. Rapid advances of nanotechnology in recent years enable the development of advanced metal matrix nanocomposites for structural engineering and functional device applications. This review focuses on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets. These include processing strategies of carbonaceous nanomaterials and their composites, mechanical and tribological responses, corrosion, electrical and thermal properties as well as hydrogen storage and electrocatalytic behaviors. The effects of nanomaterial dispersion in the metal matrix and the formation of interfacial precipitates on these properties are also addressed. Particular attention is paid to the fundamentals and the structure–property relationships of such novel nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.