Abstract

A group of sulfonium salts equipped with a polyhydroxylated side-chain structure have been isolated and identified as potent α-glycosidase inhibitors. Consequently, they have become an attractive target in diverse research disciplines, including organic synthesis, drug discovery, and chemical biology. To this end, the development of practical and effective synthetic strategies, especially for more bioactive de-O-sulfonated sulfonium salts, is a significant research area in organic synthesis. An ideal synthetic methodology should provide easily accessible intermediates with high chemical stability for the key coupling reaction to diastereoselectively construct the sulfonium cation center. This minireview summarizes recently developed strategies applied in the construction of natural de-O-sulfonated sulfonium sugars: 1) acid-catalyzed de-O-sulfonation of sulfonium sulfate inner salts, 2) a coupling reaction between side-chain fragments containing leaving groups and a thiosugar, 3) a coupling reaction between side-chain fragments containing epoxide structures and a thiosugar, and 4) a two-step sequential SN 2 nucleophilic substitution between side-chain fragments containing thiol groups and a diiodide derivative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.