Abstract

Higher plants utilize various mechanisms to maintain iron homeostasis. To acquire sparingly soluble iron from the rhizosphere, graminaceous plants synthesize natural iron (III) chelators known as mugineic acid family phytosiderophores (MAs). Recent research has uncovered various genes involved in iron uptake and translocation, as well as factors regulating the expression of these genes, especially in rice. Manipulation of these molecular components is used to produce transgenic crops with enhanced tolerance to iron deficiency, or with a high seed iron content. Since iron homeostasis is closely linked to that of other mineral elements, an understanding of this phenomenon will serve as the basis for the production of crops with low concentrations of toxic metals and transgenic plants for phytoremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.