Abstract

Supercapacitors (SCs) possess the capacity to function as fundamental electrochemical storage technology inside intermittent renewable energy sources, effectively mitigating the disparity between batteries and conventional capacitors. Considerable investigation has been undertaken into electrode materials from transition metals oxide (TMO) composites to explore their potential value in the SCs field. However, it is essential to acknowledge that these materials have limitations, including the hindered transport of electrons and ions and subpar electronic conductivity. The limitations mentioned above provide substantial obstacles to the electrochemical efficacy of these materials within the context of energy storage applications. The advancement of electrode materials developing transition metals is of dominant significance in attaining elevated energy density, enhanced specific power, and accelerated charging/discharging rates. Consequently, this enhances the overall efficacy of SCs. This review objectives to give a comprehensive summary of the recent progress made in electrode materials, specifically TMO composites. The primary objective of this study is to analyze and evaluate the diverse morphologies, components, and power characteristics linked to these materials. Furthermore, our study provides valuable insights into the potential of TMO-based hybrid electrode materials in SCs. The objective is to enhance their performance and promote their adoption of extensive energy storage and conversion applications. This review aims to contribute to the progress of these materials and their potential prospects in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.