Abstract
Inferences concerning the number of components in a mixture distribution are often required. These can be performed under the framework of the generalized likelihood ratio test. The classical result giving a chi-squared asymptotic distribution in general does not apply, indeed the limiting distribution of the corresponding test statistic has long remained a mystery. The characterization of the asymptotic distribution in a general setting has been previously derived under a separation condition. The relaxation of the separation condition, the calculation of the percentile points and asymptotic power, both in the case of a bounded and an unbounded parameter set can be obtained. An overview of the very recent asymptotic results in the problem of testing homogeneity against a two-component mixture is provided. Illustrations of new and known results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.