Abstract

The following article overviews recent studies regarding heat transfer enhancement methods, explicitly focusing on fins and coils utilization, in phase change material-based latent heat thermal energy storage systems. It discusses the influence of various geometrical and material parameters on the melting and solidification processes, as well as the orientation of the heat transfer surface within the storage tank. Additionally, the article examines the use of a range of phase change materials regarding their melting temperature. Results show that there are research gaps regarding a few ranges of phase change materials of certain previously studied melting points. This paper's main goal was to detect possible research gaps within the phase change studies field. It should be highlighted that a vast amount of numerical studies of both finned and coiled geometries is in need of experimental verification. More than 62% of analyzed studies were performed numerically, while only 37% were performed experimentally. What is more, there were only a few studies concerning experimental investigations for melting temperatures higher than 60 °C. Furthermore, the majority of experimental as well as numerical studies were concerned only with melting phenomena. This paper also advocates for more standardized studies regarding coil geometries using non-dimensional parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.