Abstract

As a new field in POM-based functional materials, polyoxometalate-based coordination polymers (POMCPs), especially transition-metal-containing POMCPs (TM-POMCPs), have undergone substantial advancements over the past few decades for their impressive structural features and desirable properties in optics, electrochemistry, and organic catalysis. Notably, TM-POMCPs based on Keggin-type POM building blocks have attracted widespread research interest and account for more than half of the compounds reported in this class. Keggin-type POMs, strong Lewis acids with adjustable redox properties, can interact with transition metals via self-assembly in the presence of organic ligands, combining the advantages of the three constituents and resulting in many improved properties. This review focuses on Keggin-type TM-POMCPs, which are extended structures with covalently bound metal-oxide clusters with 1D chains, 2D layers, and 3D frameworks. Such coordination polymers not only enrich the structural diversity of Keggin-type POM derivatives but also provide a suitable pathway for designing functional materials with outstanding properties directed by structure–property relationship. In this review, we highlight and discuss the structural features of Keggin-type TM-POMCPs based on various dimensionalities. Furthermore, synthetic strategies and relevant applications, especially in the field of catalysis, are overviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.