Abstract

Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.