Abstract

Tactile sensory systems play a vital role in various emerging fields including robotics, prosthetics, and human–machine interfaces. However, traditional tactile sensors are typically designed to detect a single stimulus through a lock‐and‐key mechanism, which poses substantial challenges in the realization of multimodal tactile sensors. To address this issue, the convergence of tactile sensory systems with artificial neural network and machine learning (ML) platforms has been utilized to enhance the capabilities of multimodal sensors and enable signal decoupling/interpretation of mixed tactile stimuli. Herein, recent progress in multimodal sensors that can simultaneously identify various stimuli such as strain, pressure, and temperature is reviewed, providing in‐depth understanding of materials, structures, and methodologies. In addition, accurate interpretation of signals from mixed tactile stimuli under complex conditions remains challenging. This review presents a comprehensive exploration of ML algorithms that mimic human neural networks, discussing their significance in advancing smart sensory systems and improving signal interpretation in complex and dynamic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.