Abstract

3D bioprinting technology can rapidly process cell-loaded biomaterials to prepare personalized scaffolds for repairing defective tissues, tissue regeneration, and even printing tissues or organs. 3D bioprinting relies on bioinks with appropriate rheology and cytocompatibility, and hydrogels are among the most promising bioink materials for 3D bioprinting. Among many hydrogel precursor materials, hyaluronic acid (HA) stands out due to its excellent physicochemical and biological properties, such as biocompatibility, hydrophilicity, non-immunogenicity, and complete biodegradability, and has become the most attractive hydrogel precursor for bioinks. In this review, we discuss the strategies adopted for the application of HA-based hydrogels as bioinks, including printability, improving their mechanical properties, and printing with loaded cells. Finally, we summarize the application of 3D bioprinted HA-based hydrogels in various tissue engineering applications in recent years, with the aim to provide fresh inspiration for further development of HA-based hydrogels for 3D bioprinting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.