Abstract

Heterocyclic aromatic amines (HAAs) as probable carcinogenic substances are mainly generated in meat products during thermal processing. Numerous studies have contributed to the analysis, formation, and mitigation of HAAs during food processing. However, few articles have comprehensively reviewed food safety aspects from both food processing and dietary intake regarding the formation, mitigation, metabolism, biomarkers for exposure, hazard control, and risk assessment of HAAs, and related food safety researches. Several factors may influence the generation of HAAs, including processing temperature, processing time, and chemical composition of the meat. Nonetheless, these mutagenic compounds are attenuated to different levels by the addition of natural or synthetic flavorings and antioxidant-rich marinades, as well as pretreatments using technique such as microwave heating. After dietary intake, different types of HAAs are metabolized in humans by several enzymes, including cytochrome P450s, peroxidases, N-acetyltransferases, sulfotransferases, uridine diphosphate-glucuronosyltransferases, and glutathione S-transferases. Their primary metabolites are further conjugated with DNA or ultimately excreted in urine and feces. The 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in hair as well as DNA, hemoglobin, and serum albumin adducts has been considered as biomarkers for exposure assessment. Dietary intake information obtained from questionnaires and the results of epidemiological investigations have shown a positive relationship between the intakes of red meat and processed meat and high risk of cancer incidence. As several cancers have been reported to be associated with HAAs, HAAs should be both effectively reduced during food processing and controlled from dietary intake to facilitate human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.