Abstract

Compressive sensing is an efficient way to represent signal with less number of samples. Shannon’s theorem which states that the sampling rate must be at least twice the maximum frequency present in the signal (the so-called Nyquist rate) is a common practice and conventional approach to sampling signals or images. Compressive sensing reveals that signals can be sensed or recovered from lesser data than required by Shannon’s theorem. This paper presents a brief historical background, mathematical foundation, and a theory behind compressive sensing and its emerging applications with a special emphasis on communication, network design, signal processing, and image processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.