Abstract
Lithium–oxygen (Li–O2) batteries have great potential for applications in electric devices and vehicles due to their high theoretical energy density of 3500 Wh kg−1. Unfortunately, their practical use is seriously limited by the sluggish decomposition of insulating Li2O2, leading to high OER overpotentials and the decomposition of cathodes and electrolytes. Cathode electrocatalysts with high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are critical to alleviate high charge overpotentials and promote cycling stability in Li–O2 batteries. However, constructing catalysts for high OER performance and energy efficiency is always challenging. In this mini-review, we first outline the employment of advanced electrocatalysts such as carbon materials, noble and non-noble metals, and metal–organic frameworks to improve battery performance. We then detail the ORR and OER mechanisms of photo-assisted electrocatalysts and single-atom catalysts for superior Li–O2 battery performance. Finally, we offer perspectives on future development directions for cathode electrocatalysts that will boost the OER kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.