Abstract

Perovskite-type oxides with general stoichiometry ABO3 (A is a lanthanide or alkali earth metal, and B is transition metal) constitute a rich material playground for application as resistive-type gas-sensing layers. Immense interest is triggered by, among other factors, stability of abundant elements (≈ 90% in the periodic table) in this stoichiometry, relatively easy tunability of structure and chemical composition, and their off-stoichiometry stability upon doping. Moreover, their capability to host cationic and abundant oxygen vacancies renders them with excellent electrical and redox properties, and synergistic functions that influence their performance. Herein, we present an overview of recent development in the use of ABO3 perovskites as resistive-type gas sensors, clearly elucidating current experimental strategies, and sensing mechanisms involved in realization of enhanced sensing performance. Finally, we provide a brief overview of limitations that hamper their potential utilization in gas sensors and suggest new pathways for novel applications of ABO3 materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.