Abstract

Astroglial activation constitutes a dominant response to all types of injuries of the CNS. Despite the ubiquitous nature of this cellular reaction to neural injury, a little is known concerning the signaling mechanisms that initiate it. Recently, we demonstrated that astrocytic hypertrophy and enhanced expression of glial fibrillary acidic protein resulting from toxicant-induced neurodegeneration are linked to activation of the janus kinase (JAK)-signal transducer and activator of transcription-3 (STAT3) pathway. These observations implicate ligands at the gp130 receptor as potential upstream effectors of astrogliosis. Here we used the brain slice preparation to examine potential activators of the JAK-STAT3 pathway. Following incubation of freshly cut striatal slices in phosphate-free oxygenated buffer for up to 75 min, we found that slicing the striatum itself was a sufficient stimulus to initiate a rapid activation of the JAK-STAT3 pathway as assessed with immunoblots of pSTAT3((tyr705)) using phospho-state specific antibodies. The mRNA for the gp130 cytokines, leukemia inhibitory factor, interleukin-6 and oncostatin M or the beta-chemokine, monocyte chemoattractive protein (CCl2) also were up-regulated in the slice. Moreover, we could enhance the activation of STAT3((tyr705)) by adding exogenous cytokines to the slice and we could inhibit phosphorylation of STAT3((tyr705)) by addition of tyrosine kinase inhibitors (Lav A and AG490) or neutralizing antibodies directed against leukemia inhibitory factor or oncostatin M. These data suggest that STAT3 activation is an early event in slice-induced glial activation and establishes the brain slice preparation method as a reliable model to examine the signaling mechanisms that underlie glial activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.