Abstract

AbstractGrassland reconstruction is a major approach to alleviate the ‘black beach’ in Sanjiangyuan of the Qinghai-Tibetan Plateau. It is vital to understand how to manage the planting grassland after reconstruction. And which artificial grassland management pattern is more likely to restore the degraded grassland of ‘black beach?’ To provide the scientific basis for the restoration of ‘black beach’, we investigated the changes in vegetation characteristics, soil physicochemical properties and soil microbial community structure of planting grassland under different management patterns, and explored the effect of the management patterns on community succession of planting grassland. In this study, vegetation characteristics and soil physicochemical properties were measured by field investigation and laboratory analyses, respectively. Soil microbial community composition was determined by high-throughput sequencing techniques. The results showed that there were significant differences in vegetation characteristics, soil physicochemical properties and soil microbial community structure of the planting grassland under different management patterns. Actinobacteria and Basidiomycota were mainly controlled by vegetation plant species diversity, aboveground biomass (AGB) and soil organic carbon (SOC). Shannon-Wiener index, AGB and SOC peaked and the relative abundance of amplicon sequence variants annotated by Actinobacteria and Basidiomycota were significantly enriched under the management pattern of the planting once treatment. Additionally, the soil had the highest bacterial diversity and the lowest fungal diversity under the planting once treatment, becoming a ‘bacterial’ soil. These vegetation characteristics and soil environment were more conducive to overall positive community succession, indicating that the planting once treatment is the most reasonable management pattern for restoring the ‘black beach’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.