Abstract

The development of a multifunctional single molecule phototherapeutic agent with excellent fluorescence imaging, photothermal therapy and photodynamic therapy at the same time is still a challenging task, which mainly arises from the low absorbance of the molecule, and the complexity of energy dissipation and molecular design. Herein, four donor-acceptor (D-A) compounds were synthesized by linking triphenylamine (TPA), thiophene/thieno[3,2-b]thiophene and different cyano acceptor structures. In this design, we propose a molecular design strategy to redshift absorption and increase the molar extinction coefficient (ε) by enhancing electron-withdrawing acceptors and enlarging the π-conjugation plane unit. Due to the twisted structure of TPA, these compounds exhibit aggregation-induced emission (AIE) characteristics. Notably, these AIEgens have long emission wavelengths, excellent photostability, biocompatibility, photothermal stability and singlet oxygen (1O2) generation performance. Among them, the photothermal conversion efficiency of a compound (named TCF-SS-TPA NPs) can reach 84.5%. Cellular internalization and therapy showed that TCF-SS-TPA NPs have good biocompatibility, excellent cell bioimaging and cancer phototherapy capabilities in vitro. This study will stimulate the molecular design of multifunctional phototherapeutics to realize effective synergistic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.