Abstract

Over the past years, the freely available Monte Carlo-code REAS which simulates radio emission from air showers based on the geosynchrotron model, was used regularly for comparisons with data. However, it emerged that in the previous version of the code, emission due to the variation of the number of charged particles within an air shower was not taken into account. In the following article, we show the implementation of these emission contributions in REAS3 by the inclusion of “end-point contributions” and discuss the changes on the predictions of REAS obtained by this revision. The basis for describing radiation processes is an universal description which is gained by the use of the end-point formulation. Hence, not only pure geomagnetic radiation is simulated with REAS3 but also radiation due to the variation of the net charge excess in the air shower, independent of the Earth's magnetic field. Furthermore, we present a comparison of lateral distributions of LOPES data with REAS3-simulated distributions. The comparison shows a good agreement between both, data and REAS3 simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.