Abstract

The Campylobacter fetus surface-layer (S-layer) proteins mediate both complement resistance and antigenic variation in mammalian hosts. Wild-type strain 23D possesses the sapA gene, which encodes a 97-kDa S-layer protein, and several sapA homologs are present in both wild-type and mutant strains. Here we report that a cloned silent gene (sapA1) in C. fetus can express a functional full-length S-layer protein in Escherichia coli. Analysis of sapA and sapA1 and partial analysis of sapA2 indicate that a block of approximately 600 bp beginning upstream and continuing into the open reading frames is completely conserved, and then the sequences diverge completely, but immediately downstream of each gene is another conserved 50-bp sequence. Conservation of sapA1 among strains, the presence of a putative Chi (RecBCD recognition) site upstream of sapA, sapA1, and sapA2, and the sequence identities of the sapA genes suggest a system for homologous recombination. Comparison of the wild-type strain (23D) with a phenotypic variant (23D-11) indicates that variation is associated with removal of the divergent region of sapA from the expression locus and exchange with a corresponding region from a sapA homolog. We propose that site-specific reciprocal recombination between sapA homologs leads to expression of divergent S-layer proteins as one of the mechanisms that C. fetus uses for antigenic variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.