Abstract

Many short-term experiments have been conducted under increasing CO2 but results have been varied and have not yet led to a conclusive quantitative understanding of the CO2 response of plant growth. This may have been partly due to a lack of explicit consideration of the positive feedback inherent in plant growth during periods of exponential growth. This feedback can increase an initial physiological enhancement of relative growth rate (RGR) into a much larger biomass enhancement. To overcome this problem, we re-analysed existing experimental data from 78 publications. We calculated the RGRs of C3 plants and their relative enhancement under elevated CO2 and derived response indices that were independent of the duration of experiments and the RGR at normal atmospheric CO2. The RGR of unstressed plants increased by 14±2% under doubled CO2, with observed RGR enhancement linearly correlated with calculated photosynthetic enhancements (based on the Farquhar-von Caemmerer-Berry photosynthesis model), but at only half their numeric values. Calculated RGR enhancements did not change significantly for temperatures from 12 to 40°C, but were reduced under nutrient limitation, and were increased under water stress or low irradiance. We concluded that short-term experiments can offer simple and cost-effective insights into plant CO2 responses, provided they are analysed by calculating relative changes in RGR during the strictly exponential initial growth phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.