Abstract

The Geodetic Observatory Pecný (GOP) routinely estimates near real-time zenith total delays (ZTD) from GPS permanent stations for assimilation in numerical weather prediction (NWP) models more than 12years. Besides European regional, global and GPS and GLONASS solutions, we have recently developed real-time estimates aimed at supporting NWP nowcasting or severe weather event monitoring. While all previous solutions are based on data batch processing in a network mode, the real-time solution exploits real-time global orbits and clocks from the International GNSS Service (IGS) and Precise Point Positioning (PPP) processing strategy. New application G-Nut/Tefnut has been developed and real-time ZTDs have been continuously processed in the nine-month demonstration campaign (February–October, 2013) for selected 36 European and global stations. Resulting ZTDs can be characterized by mean standard deviations of 6–10mm, but still remaining large biases up to 20mm due to missing precise models in the software. These results fulfilled threshold requirements for the operational NWP nowcasting (i.e. 30mm in ZTD). Since remaining ZTD biases can be effectively eliminated using the bias-reduction procedure prior to the assimilation, results are approaching the target requirements in terms of relative accuracy (i.e. 6mm in ZTD). Real-time strategy and software are under the development and we foresee further improvements in reducing biases and in optimizing the accuracy within required timeliness. The real-time products from the International GNSS Service were found accurate and stable for supporting PPP-based tropospheric estimates for the NWP nowcasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.