Abstract
The quality monitoring and control (QMC) has been an essential process in the manufacturing industries. With the advancements in data analytics, machine-learning based QMC has become popular in various manufacturing industries. At the same time, the cost effectiveness (CE) of the QMC is perceived as a main decision criterion that explicitly accounts for inspection efforts and has a direct relationship with the QMC capability. In this paper, the cost-effective support vector machine (CESVM)-based automated QMC system (QMCS) is proposed. Unlike existing models, the proposed CESVM explicitly incorporates inspection-related expenses and error types in the SVM algorithm. The proposed automated QMCS is verified and validated using an automotive door-trim manufacturing process. Next, we perform a design of experiment to assess the sensitivity analysis of the proposed framework. The proposed model is found to be effective and could be viewed as an alternative or complementary tool for the traditional quality inspection system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.