Abstract

Real-time path planning can efficiently relieve traffic congestion in urban scenarios. However, how to design an efficient path-planning algorithm to achieve a globally optimal vehicle-traffic control still remains a challenging problem, particularly when we take drivers' individual preferences into consideration. In this paper, we first establish a hybrid intelligent transportation system (ITS), i.e., a hybrid-VANET-enhanced ITS, which utilizes both vehicular ad hoc networks (VANETs) and cellular systems of the public transportation system to enable real-time communications among vehicles, roadside units (RSUs), and a vehicle-traffic server in an efficient way. Then, we propose a real-time path-planning algorithm, which not only improves the overall spatial utilization of a road network but reduces average vehicle travel cost for avoiding vehicles from getting stuck in congestion as well. A stochastic Lyapunov optimization technique is exploited to address the globally optimal path-planning problem. Finally, the transmission delay of the hybrid-VANET-enhanced ITS is evaluated in VISSIM to show the timeliness of the proposed communication framework. Moreover, system-level simulations conducted in Java demonstrate that the proposed path-planning algorithm outperforms the traditional distributed path planning in terms of balancing the spatial utilization and drivers' travel cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.