Abstract

There is a need to measure contact pressures at the femoral component and tibia plate of a knee arthroplasty implant to determine the wear and tear of the polyethylene (PE) insert of the implant. Today, most pressure monitoring systems for knee arthroplasty implants are either limited to in vitro or intraoperative use, or cannot measure contact pressures at the polyethylene surface. Here, we are developing a wireless passive sensor system for measuring the contact pressure at the knee arthroplasty in vivo. The sensor system is made of a pressure-sensitive magnetic layer embedded under the top surface of a PE insert used for mapping the contact pressures with the femoral components. The pressure-sensing layer consists of a grid of pressure and stress sensitive magnetoelastic thin strips that alter their magnetic properties with applied force. Measurements are taken at pressure points located at the crossings of the grid. The magnetization of each sensing strip is remotely measured by using an AC magnetic field to excite the material to generate higher-frequency fields, which are then detected through external detection coils. The responses of these sensing strips are fed into an algorithm to determine the pressure loadings at all pressure points, which allows for real-time, in vivo determination of pressure profiles on the PE insert. By using an array of magnetoelastic sensing strips, we have demonstrated the remote detection of pressure across a surface. The 2nd order harmonic amplitude of a 30 mm×1.5mm magnetoelastic strip decreased linearly with increasing pressure. For this sensing strip, the rate of decrease was about 0.1 (normalized to unstressed signal level) per 200 kPa. An algorithm was also developed to determine the pressures at all pressure points from the responses of the sensing strips. Experimental results have shown that the algorithm can accurately map the pressure profile of a 3×3 sensing strip array. Further works include developing a fabrication process for safely embedding the sensing strips into a PE insert, and modifying the algorithm for a larger sensing strip array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.