Abstract

Purpose: To enable real‐time adaptive magnetic resonance imaging–guided radiotherapy (MRIgRT) by obtaining time‐resolved three‐dimensional (3D) deformation vector fields (DVFs) with high spatiotemporal resolution and low latency (<500 ms). Theory and Methods: Respiratory‐resolved T1‐weighted 4D‐MRI of 27 patients with lung cancer were acquired using a golden‐angle radial stack‐of‐stars readout. A multiresolution convolutional neural network (CNN) called TEMPEST was trained on up to 32× retrospectively undersampled MRI of 17 patients, reconstructed with a nonuniform fast Fourier transform, to learn optical flow DVFs. TEMPEST was validated using 4D respiratory‐resolved MRI, a digital phantom, and a physical motion phantom. The time‐resolved motion estimation was evaluated in‐vivo using two volunteer scans, acquired on a hybrid MR‐scanner with integrated linear accelerator. Finally, we evaluated the model robustness on a publicly‐available four‐dimensional computed tomography (4D‐CT) dataset. Results: TEMPEST produced accurate DVFs on respiratory‐resolved MRI at 20‐fold acceleration, with the average end‐point‐error <2 mm, both on respiratory‐sorted MRI and on a digital phantom. TEMPEST estimated accurate time‐resolved DVFs on MRI of a motion phantom, with an error <2 mm at 28× undersampling. On two volunteer scans, TEMPEST accurately estimated motion compared to the self‐navigation signal using 50 spokes per dynamic (366× undersampling). At this undersampling factor, DVFs were estimated within 200 ms, including MRI acquisition. On fully sampled CT data, we achieved a target registration error of 1.87±1.65 mm without retraining the model. Conclusion: A CNN trained on undersampled MRI produced accurate 3D DVFs with high spatiotemporal resolution for MRIgRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.