Abstract

Nonadiabatic holonomic quantum computation (NHQC) provides a method to implement error resilient gates and that has attracted considerable attention recently. Since it was proposed, three-level {\Lambda} systems have become the typical building block for NHQC and a number of NHQC schemes have been developed based on such systems. In this paper, we investigate the realization of NHQC beyond the standard three-level setting. The central idea of our proposal is to improve NHQC by enlarging the Hilbert space of the building block system and letting it have a bipartite graph structure in order to ensure purely holonomic evolution. Our proposal not only improves conventional qubit-based NHQC by efficiently reducing its duration, but also provides implementations of qudit-based NHQC. Therefore, our proposal provides a further development of NHQC that can contribute significantly to the physical realization of efficient quantum information processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.