Abstract

Though the synthesis of libraries of multicomponent metal oxide systems is prevalent using the combinatorial approach, the combinatorial approach has been rarely realized in studying simple metal oxides, especially applied to the atomic layer deposition (ALD) technique. In this literature, a novel combinatorial approach technique is utilized within an ALD grown simple metal oxide to synthesize a "spatially addressable combinatorial library". The two key factors in gradients were defined during the ALD process: (1) the process temperature and (2) a nonuniform flow of pulsed gases inside a cross-flow reactor. To validate the feasibility of our novel combinatorial approach, a case study of zinc oxide (ZnO), a simple metal oxide whose properties are well-known, is performed. Because of the induced gradient, the ZnO (002) crystallite size was found to gradually vary across a 100 mm wafer (∼10-20 nm) with a corresponding increase in the normalized Raman E2/A1 peak intensity ratio. The findings agree well with the visible grain size observed from scanning electron microscope. The novel combinatorial approach provides a means of systematical interpretation of the combined effect of the two gradients, especially in the analysis of the microstructure of ZnO crystals. Moreover, the combinatorial library reveals that the process temperature, rather than the crystal size, plays the most significant role in determining the electrical conductivity of ZnO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.