Abstract

Magnetic skyrmions present interesting physics due to their topological nature and hold significant promise for future information technologies. A key barrier to realizing skyrmion devices has been stabilizing these spin structures under ambient conditions. In this manuscript, we exploit the tunable magnetic properties of amorphous Fe/Gd mulitlayers to realize skyrmion lattices which are stable over a large temperature and magnetic field parameter space, including room temperature and zero magnetic field. These hybrid skyrmions have both Bloch-type and N\'eel-type character and are stabilized by dipolar interactions rather than Dzyaloshinskii-Moriya interactions, which are typically considered required for the generation of skyrmions. Small angle neutron scattering (SANS) was used in combination with soft X-ray microscopy to provide a unique, multi-scale probe of the local and long-range order of these structures. These results identify a pathway to engineer controllable skyrmion phases in thin film geometries which are stable at ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.