Abstract
In this paper, we theoretically propose an effective broadband absorption architecture in mid-infrared region based on strong coupling between the plasmonic resonance of graphene nanoribbons and the waveguide mode of a metal tapered groove. The special architecture facilitates two new hybrid modes splitting with very strong energy distribution on graphene ribbon, which results in the broadband absorption effect. To well explain these numerical results, an analytical dispersion relation of waveguide mode is obtained based on the classical LC circuit model. The fluctuating range of absorption passband is investigated by adjusting the filled medium inside of the grooves. Leveraging the concept and method, a broadband flat-top (bandwidth ≈2.5 µm) absorption with absorption rate over 60% is demonstrated. Such a design not only enhances the intrinsic weak plasmons resonance in mid-infrared spectral region, but also reduces the absorption fluctuations caused by coupling, which are the key features for developing next-generation mid-infrared broadband optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.