Abstract

Quantum conductance, known as Sharvin point contact, has been extensively investigated in many electronic devices, including diodes, transistors, and switches, especially in conductive filaments-based memristors. Quantum conductance with one or multiple atoms point connection can overcome the limitations of scaling and operating speed of nonvolatile multiple memory, logic device, and brain-inspired computing systems. However, because of the instability of the atomic arrangement in the one/multiple atoms connection in a conductive filaments-based memristor, it is a great challenge to maintain quantum conductance states for a long time. Here, we demonstrate that the stable long-time retention of multi-level quantum conductance states can be realized in Mott insulator vanadium dioxide with a highly oriented crystalline texture. According to in situ transmission electron microscope, conductive atomic force microscope, and detailed energy band analysis results, it is proposed that the grain boundaries act as reservoirs for oxygen vacancies and confine the oxygen vacancy diffusion in the narrow grain boundaries due to the higher bulk diffusion barrier. Our approach is extremely crucial for realizing quantum conductance-based electronic devices, such as multi-level and high-density storage and neuromorphic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.