Abstract

Digital twin (DT) is a virtual and digital representation of physical objects or processes. In this paper, this concept is applied to dynamic control of the collection window in the ion exchange chromatography (IEC) towardsample variations. A possible structure of a feedforward model-based control DT system was proposed. Initially, a precise IEC mechanistic model was established through experiments, model fitting, and validation. The average root mean square error (RMSE) of fitting and validation was 8.1% and 7.4%, respectively. Then a model-based gradient optimization was performed, resulting in a 70.0% yield with a remarkable 11.2% increase. Subsequently, the DT was established by systematically integrating the model, chromatography system, online high-performance liquid chromatography, and a server computer. The DT was validated under varying load conditions. The results demonstrated that the DT could offer an accurate control with acidic variants proportion and yield difference of less than 2% compared to the offline analysis. The embedding mechanistic model also showed a positive predictive performance with an average RMSE of 11.7% during theDT test under >10% sample variation. Practical scenario tests indicated that tightening the control target could further enhance the DT robustness, achieving over 98% success rate with an average yield of 72.7%. The results demonstrated that the constructed DT could accurately mimic real-world situations and perform an automated and flexible pooling in IEC. Additionally, a detailed methodology for applying DT was summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.