Abstract

For tumor tracking therapy, precise knowledge of tumor position in real-time is very important. A technique using single x-ray projection based on a convolutional neural network (CNN) was recently developed which can achieve accurate tumor localization in real-time. However, this method was only validated at fixed gantry angles. In this study, an improved technique is developed to handle arbitrary gantry angles for rotational radiotherapy.To evaluate the highly complex relationship between x-ray projections at arbitrary angles and tumor motion, a special CNN was proposed. In this network, a binary region of interest (ROI) mask was applied on every extracted feature map. This avoids the overfitting problem due to gantry rotation by directing the network to neglect those irrelevant pixels whose intensity variation had nothing to do with breathing motion. In addition, an angle-dependent fully connection layer (ADFCL) was utilized to recover the mapping from extracted feature maps to tumor motion, which would vary with the gantry angles. The method was tested with images from 15 realistic patients and compared with a variant network of VGG, developed by Oxford University’s Visual Geometry Group.The tumors were clearly visible on x-ray projections for five patients only. The average tumor localization error was under 1.8 mm and 1.0 mm in superior-inferior and lateral directions. For the other ten patients whose tumors were not clearly visible in the x-ray projection, a feature point localization error was computed to evaluate the proposed method, the mean value of which was no more than 1.5 mm and 1.0 mm in both directions for all patients.A tumor localization method for single x-ray projection at arbitrary angles based on a novel CNN was developed and validated in this study for real-time operation. This greatly expanded the applicability of the tumor localization framework to the rotation therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.