Abstract

This article is concerned with the design and implementation of a system for real-time monocular tracking of a moving object using the two degrees of freedom of a camera platform. Figure-ground segregation is based on motion without making anya prioriassumptions about the object form. Using only the first spatiotemporal image derivatives, substraction of the normal optical flow induced by camera motion yields the object image motion. Closed-loop control is achieved by combining a stationary Kalman estimator with an optimal Linear Quadratic Regulator. The implementation on a pipeline architecture enables a servo rate of 25 Hz. We study the effects of time-recursive filtering and fixed-point arithmetic in image processing and we test the performance of the control algorithm on controlled motion of objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.