Abstract

The main factors that enable capture of complex and transient signals in real-time are improved sampling rates and processing speeds. The time-interleaved architecture is an effective method that allows systems to break through the speed bottleneck of single analog-to-digital converters (ADCs) and go beyond the state-of-the-art process technology limit. However, the performance of the acquisition system may be reduced because of the offset, gain, and time mismatch errors that occur in time-interleaved ADC systems. To correct these errors, this paper first proposes a self-adaptive correction algorithm and then introduces real-time solutions for this algorithm. Finally, the proposed calibration method is implemented in a digital phosphor oscilloscope. Simulations and experimental testing indicate that this system shows good real-time performance and provides a high dynamic performance with an effective number of bits of 7.3 bits and a signal-to-noise ratio of 45.5574 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.